1.5 KiB
1.5 KiB
milly's semantics
We are going to define a desugared, restricted subset of milly called core for which we define an operational semantics.
Afterwards a translation from the full syntax to the core is defined.
core
For now we ignore ground types and their terms.
Let us start by defining the core syntax:
t := t t (function application)
| \x. t (lambda abstraction)
| x (variable)
| true (bool literal)
| false (bool literal)
| let v = t in t (let expression)
| (t_1, ..., t_n) (tuple constructor)
| #n t (tuple projection)
| <alt: t> (variant constructor)
| match t (case expression)
{
<alt_1: x_1> -> t_1
...
<alt_n: x_n> -> t_n
}
Values we consider:
v := \x. t (Lambda function)
| true (bool value)
| false (bool value)
| <alt: v> (variant value)
| (v_1, ..., v_n) (tuple value)
Types are:
type := bool (ground bool type)
| type -> type (function type)
| <alt_1: type_1, (variant type)
...,
alt_n: type_n>
| (type_1, ..., type_n) (product type)
Typing rules:
Rule T-True
true : bool
Rule T-False
false : bool
Rule T-Tuple
If t_1 : T_1, ..., t_n : T_n
(t_1, ..., t_n) : (T_1, ..., T_n)
Rule T-Proj
If t : (T_1, ..., T_n)
#k t : T_k