245 lines
6.0 KiB
Matlab
245 lines
6.0 KiB
Matlab
|
|
%% Plant definition
|
|
% refer to to Sinha, FIGURE 5.1.1
|
|
clear;
|
|
|
|
k1 = ureal('k1', 100, 'Percentage', 20);
|
|
k2 = ureal('k2', 500, 'Percentage', 20);
|
|
m = ureal('m', 1, 'Percentage', 1);
|
|
alpha = ureal('alpha', 1, 'Percentage', 5);
|
|
|
|
A = [
|
|
0 0 1 0;
|
|
0 0 0 1;
|
|
-(k1+k2)/m k2/m -alpha/m 0;
|
|
k2/m -(k1+k2)/m 0 -alpha/m;
|
|
];
|
|
|
|
B = [0 0; 0 0; 1 0; 0 1];
|
|
C = [eye(2) zeros(2)];
|
|
D = zeros(2);
|
|
|
|
G = uss(A, B, C, D);
|
|
G_fullstate = uss(A, B, eye(4), zeros(4, 2));
|
|
|
|
% multiplicative uncertainty
|
|
w = logspace(0, 3, 40);
|
|
systems = usample(G, 40);
|
|
data = frd(systems, w) ;
|
|
[~, Info] = ucover(data, G.NominalValue, 4, []);
|
|
Im = tf(Info.W1);
|
|
|
|
%% Controller Definition
|
|
Gn = G.NominalValue;
|
|
Gn_fullstate = G_fullstate.NominalValue;
|
|
|
|
s = tf('s');
|
|
|
|
% output sensitivity weight
|
|
Ms = 1.7; % peak sensitivity (~ stability margin)
|
|
omega_b = 5; % open loop bandwidth
|
|
eps_s = 0.01; % low frequency sensitivity upper bound (~ robust tracking)
|
|
Ws = (s/Ms + omega_b)/(s+omega_b*eps_s);
|
|
|
|
%%%% loop invertion controller
|
|
% K = inv(Gn);
|
|
% K = K*1/s * 1/(1+10*s) * (1+0.7*s) * 100;
|
|
% K.OutputName = 'u';
|
|
%
|
|
% AP_u = AnalysisPoint('u', 2);
|
|
% Gcl = feedback(G*AP_u*K, eye(2));
|
|
% Gcl.InputName = 'r';
|
|
% Gcl.OutputName = 'y';
|
|
% L = Gn*K;
|
|
|
|
%%%% PI diagonal controller
|
|
% D = evalfr(inv(G), 0);
|
|
% K = D*(s^2 + s + 100) / (1+s) / (1+s/10);
|
|
%
|
|
% Gcl = feedback(G*K, eye(2));
|
|
% L = Gn*K;
|
|
|
|
%%%% LQI controller
|
|
% state weight + integrators weight
|
|
Q = blkdiag(1e3*eye(4), 1e7*eye(2));
|
|
% input weight
|
|
R = 1e-3*eye(2);
|
|
K = lqi(Gn, Q, R, zeros(6, 2));
|
|
K = ss(K);
|
|
K.InputName = {'x(1)', 'x(2)', 'x(3)', 'x(4)', 'e(1)', 'e(2)'};
|
|
K.OutputName = 'u';
|
|
G_fullstate.InputName = 'u';
|
|
G_fullstate.OutputName = 'x';
|
|
G_feedback = connect(G_fullstate, -K, 'e', 'x', {'u', 'x'});
|
|
% only select first and second output
|
|
G_feedback = G_feedback([1 2], [1 2]);
|
|
G_feedback.OutputName = 'y';
|
|
|
|
Gcl = feedback(G_feedback*1/s, eye(2));
|
|
Gcl.InputName = 'r';
|
|
L = ss(G_feedback)*1/s;
|
|
|
|
%%%% Sensitivity functions
|
|
S = inv(eye(2)+L);
|
|
T = eye(2) - S;
|
|
|
|
if ~isstable(T)
|
|
disp('Nominal closed loop is not stable');
|
|
else
|
|
disp('Nominal closed loop is stable');
|
|
end
|
|
|
|
if hinfnorm(S*Ws) <= 1
|
|
disp('Nominal performance specifications on sensitivity are met')
|
|
else
|
|
disp('Nominal performance specifications on sensitivity are not met')
|
|
end
|
|
%% close figures
|
|
close all;
|
|
|
|
%% Singular value robustness and performance analysis
|
|
figure('Name', 'Robust stability analysis');
|
|
w = logspace(-1, 10, 100);
|
|
SV = sigma(eye(2) + inv(L), w);
|
|
semilogx(w, 20*log10(min(SV, [], 1))); hold on;
|
|
sigma(Im, w, 'r'); hold off;
|
|
title('Robust stability analysis')
|
|
|
|
figure('Name', 'Sensitivity and loop performance');
|
|
% open loop performance specifications
|
|
subplot(2, 2, 1);
|
|
sigma(L);
|
|
title('Open loop specifications: L');
|
|
|
|
subplot(2, 2, 2);
|
|
[SV, W] = sigma(S);
|
|
semilogx(W, 20*log10(max(SV, [], 1))); hold on;
|
|
% sensitivity weight
|
|
r = freqresp(1/Ws, W);
|
|
semilogx(W, 20*log10(abs(r(:, :))), 'r');
|
|
hold off;
|
|
title('Open loop specifications: S');
|
|
|
|
subplot(2, 2, 3);
|
|
[SV, W] = sigma(T);
|
|
semilogx(W, 20*log10(max(SV, [], 1)));
|
|
title('Open loop specifications: T');
|
|
|
|
%% Structured singular value analysis
|
|
opts = robOptions('VaryFrequency','on');
|
|
[stabmarg,wcg,info] = robstab(Gcl,opts);
|
|
figure('Name', 'mu analysis');
|
|
semilogx(info.Frequency,info.Bounds)
|
|
title('Stability Margin vs. Frequency');
|
|
ylabel('Margin');
|
|
xlabel('Frequency');
|
|
legend('Lower bound','Upper bound');
|
|
|
|
if stabmarg.LowerBound > 1
|
|
fprintf('Closed loop system is robustly stable: mu=%f-%f at %f rad/s\n', ...
|
|
stabmarg.LowerBound, stabmarg.UpperBound, stabmarg.CriticalFrequency);
|
|
else
|
|
fprintf('Closed loop system is not robustly stable: mu=%f-%f at %f rad/s\n', ...
|
|
stabmarg.LowerBound, stabmarg.UpperBound, stabmarg.CriticalFrequency);
|
|
end
|
|
|
|
%% Plant sv and multiplicative uncertainty
|
|
figure('Name', 'Open Loop System');
|
|
subplot(2, 1, 1);
|
|
sigma(G);
|
|
hold on;
|
|
title('Singular values of the system');
|
|
|
|
subplot(2, 1, 2);
|
|
sigma(Im);
|
|
title('Multiplicative Uncertainty Magnitude');
|
|
|
|
%% Simulation
|
|
t = 0:0.001:3;
|
|
r1 = 0*t + 0.1; % 10 centimeters displacement
|
|
r2 = 0*t;
|
|
|
|
% transfer function from reference to controller output
|
|
G_ur = getIOTransfer(Gcl, 'r', 'u');
|
|
|
|
y = lsim(T, [r1; r2], t);
|
|
u = lsim(G_ur, [r1; r2], t);
|
|
realizations = usample(Gcl, 20);
|
|
ninputs = 2;
|
|
y_unc = zeros(ninputs*length(realizations), length(t));
|
|
u_unc = zeros(ninputs*length(realizations), length(t));
|
|
|
|
for i=1:length(realizations)
|
|
G_ur_i = getIOTransfer(realizations(:, :, i, 1), 'r', 'u');
|
|
p = lsim(realizations(:,:, i, 1), [r1; r2], t);
|
|
q = lsim(G_ur_i, [r1; r2], t);
|
|
y_unc(ninputs*i, :) = p(:, 1);
|
|
y_unc(ninputs*i+1, :) = p(:, 2);
|
|
u_unc(ninputs*i, :) = q(:, 1);
|
|
u_unc(ninputs*i+1, :) = q(:, 2);
|
|
end
|
|
|
|
Twc = usubs(Gcl, wcg);
|
|
Tur = usubs(G_ur, wcg);
|
|
y_wc = lsim(Twc, [r1; r2], t);
|
|
u_wc = lsim(Tur, [r1; r2], t);
|
|
|
|
%% Output and control action plot
|
|
figure('Name', 'Transient simulation: output');
|
|
subplot(2, 3, 1);
|
|
plot(t, r1, '--b', t, y(:, 1), 'r');
|
|
title('Nominal system output');
|
|
subplot(2, 3, 4);
|
|
plot(t, r2, '--b', t, y(:, 2), 'r');
|
|
|
|
subplot(2, 3, 2);
|
|
plot(t, r1, '--b'); hold on;
|
|
for i=1:length(realizations)
|
|
plot(t, y_unc(ninputs*i, :), 'r');
|
|
end
|
|
hold off;
|
|
title('Uncertain system output');
|
|
|
|
subplot(2, 3, 5);
|
|
plot(t, r2, '--b'); hold on;
|
|
for i=1:length(realizations)
|
|
plot(t, y_unc(ninputs*i+1, :), 'r');
|
|
end
|
|
hold off;
|
|
|
|
subplot(2, 3, 3);
|
|
plot(t, r1, '--b', t, y_wc(:, 1), 'r');
|
|
title('Worst case system output');
|
|
|
|
subplot(2, 3, 6);
|
|
plot(t, r2, '--b', t, y_wc(:, 2), 'r');
|
|
|
|
figure('Name', 'Transient simulation: control');
|
|
subplot(2, 3, 1);
|
|
plot(t, r1, '--b', t, u(:, 1), 'r');
|
|
title('Nominal system control action');
|
|
subplot(2, 3, 4);
|
|
plot(t, r2, '--b', t, u(:, 2), 'r');
|
|
|
|
subplot(2, 3, 2);
|
|
plot(t, r1, '--b'); hold on;
|
|
for i=1:length(realizations)
|
|
plot(t, u_unc(ninputs*i, :), 'r');
|
|
end
|
|
hold off;
|
|
title('Uncertain system control action');
|
|
|
|
subplot(2, 3, 5);
|
|
plot(t, r2, '--b'); hold on;
|
|
for i=1:length(realizations)
|
|
plot(t, u_unc(ninputs*i+1, :), 'r');
|
|
end
|
|
hold off;
|
|
|
|
subplot(2, 3, 3);
|
|
plot(t, r1, '--b', t, u_wc(:, 1), 'r');
|
|
title('Worst case system control action');
|
|
|
|
subplot(2, 3, 6);
|
|
plot(t, r2, '--b', t, u_wc(:, 2), 'r');
|