Compare commits
No commits in common. "89e068e794df05b4a5096b2405a261902afa31d2" and "3f0461070f93fc752bb4f83ba3287d8ddc99220e" have entirely different histories.
89e068e794
...
3f0461070f
|
|
@ -1,182 +0,0 @@
|
|||
|
||||
%% Plant definition
|
||||
% refer to to Sinha, FIGURE 5.1.1
|
||||
clear;
|
||||
|
||||
k1 = ureal('k1', 100, 'Percentage', 20);
|
||||
k2 = ureal('k2', 500, 'Percentage', 20);
|
||||
m = ureal('m', 1, 'Percentage', 1);
|
||||
alpha = ureal('alpha', 1, 'Percentage', 5);
|
||||
|
||||
A = [
|
||||
0 0 1 0;
|
||||
0 0 0 1;
|
||||
-(k1+k2)/m k2/m -alpha/m 0;
|
||||
k2/m -(k1+k2)/m 0 -alpha/m;
|
||||
];
|
||||
|
||||
B = [0 0; 0 0; 1 0; 0 1];
|
||||
C = [eye(2) zeros(2)];
|
||||
D = zeros(2);
|
||||
|
||||
G = uss(A, B, C, D);
|
||||
G_fullstate = uss(A, B, eye(4), zeros(4, 2));
|
||||
|
||||
% multiplicative uncertainty
|
||||
w = logspace(0, 3, 40);
|
||||
systems = usample(G, 40);
|
||||
data = frd(systems, w) ;
|
||||
[G2, Info] = ucover(data, G.NominalValue, 4, []);
|
||||
Im = tf(Info.W1);
|
||||
|
||||
%% Controller Definition
|
||||
Gn = G.NominalValue;
|
||||
Gn_fullstate = G_fullstate.NominalValue;
|
||||
|
||||
s = tf('s');
|
||||
|
||||
%%%% loop invertion controller
|
||||
% K = inv(Gn);
|
||||
% K = K*1/s * 1/(1+10*s) * (1+0.7*s) * 100;
|
||||
%
|
||||
% Gcl = feedback(G*K, eye(2));
|
||||
% L = Gn*K;
|
||||
|
||||
%%%% PI diagonal controller
|
||||
% D = evalfr(inv(G), 0);
|
||||
% K = D*(s^2 + s + 100) / (1+s) / (1+s/10);
|
||||
%
|
||||
% Gcl = feedback(G*K, eye(2));
|
||||
% L = Gn*K;
|
||||
|
||||
%%%% LQI controller
|
||||
% state weight + integrators weight
|
||||
Q = blkdiag(1e3*eye(4), 1e9*eye(2));
|
||||
% input weight
|
||||
R = 1e-6*eye(2);
|
||||
K = -lqi(Gn, Q, R, zeros(6, 2));
|
||||
K = ss(K);
|
||||
K.InputName = {'x(1)', 'x(2)', 'x(3)', 'x(4)', 'e(1)', 'e(2)'};
|
||||
K.OutputName = 'u';
|
||||
G_fullstate.InputName = 'u';
|
||||
G_fullstate.OutputName = 'x';
|
||||
G_feedback = connect(G_fullstate, K, "e", "x");
|
||||
% only select first and second output
|
||||
G_feedback = G_feedback([1 2], [1 2]);
|
||||
G_feedback.OutputName = 'y';
|
||||
|
||||
Gcl = feedback(G_feedback*1/s, eye(2));
|
||||
L = G_feedback.NominalValue*1/s;
|
||||
|
||||
%%%% Sensitivity functions
|
||||
S = inv(eye(2)+L);
|
||||
T = eye(2) - S;
|
||||
|
||||
if ~isstable(T)
|
||||
disp('Nominal closed loop is not stable');
|
||||
else
|
||||
disp('Nominal closed loop is stable');
|
||||
end
|
||||
|
||||
%% Simulation
|
||||
t = 0:0.001:1;
|
||||
u1 = 0*t + 1;
|
||||
u2 = 0*t;
|
||||
|
||||
y = lsim(T, [u1; u2], t);
|
||||
realizations = usample(Gcl, 20);
|
||||
ninputs = 2;
|
||||
y_unc = zeros(ninputs*length(realizations), length(t));
|
||||
for i=1:length(realizations)
|
||||
p = lsim(realizations(:,:, i, 1), [u1; u2], t);
|
||||
y_unc(ninputs*i, :) = p(:, 1);
|
||||
y_unc(ninputs*i+1, :) = p(:, 2);
|
||||
end
|
||||
|
||||
%% close figures
|
||||
close all;
|
||||
|
||||
%% Plant sv and multiplicative uncertainty
|
||||
figure('Name', 'Open Loop System');
|
||||
subplot(2, 1, 1);
|
||||
sigma(G);
|
||||
hold on;
|
||||
title('Singular values of the system');
|
||||
|
||||
subplot(2, 1, 2);
|
||||
sigma(Im);
|
||||
title('Multiplicative Uncertainty Magnitude');
|
||||
|
||||
%% Singular value robustness and performance analysis
|
||||
figure('Name', 'Loop Analysis');
|
||||
subplot(2, 2, 1);
|
||||
w = logspace(-1, 10, 100);
|
||||
SV = sigma(eye(2) + inv(L), w);
|
||||
semilogx(w, 20*log10(min(SV, [], 1))); hold on;
|
||||
sigma(Im, w, 'r'); hold off;
|
||||
title('Robust stability analysis')
|
||||
|
||||
% open loop performance specifications
|
||||
subplot(2, 2, 2);
|
||||
sigma(L);
|
||||
title('Open loop specifications: L');
|
||||
|
||||
subplot(2, 2, 3);
|
||||
[SV, W] = sigma(S);
|
||||
semilogx(W, 20*log10(max(SV, [], 1)));
|
||||
title('Open loop specifications: S');
|
||||
|
||||
subplot(2, 2, 4);
|
||||
[SV, W] = sigma(T);
|
||||
semilogx(W, 20*log10(max(SV, [], 1)));
|
||||
title('Open loop specifications: T');
|
||||
|
||||
%% Structured singular value analysis
|
||||
opts = robOptions('VaryFrequency','on');
|
||||
[stabmarg,wcg,info] = robstab(Gcl,opts);
|
||||
semilogx(info.Frequency,info.Bounds)
|
||||
title('Stability Margin vs. Frequency');
|
||||
ylabel('Margin');
|
||||
xlabel('Frequency');
|
||||
legend('Lower bound','Upper bound');
|
||||
|
||||
if stabmarg.LowerBound > 1
|
||||
fprintf('Closed loop system is robustly stable: mu=%f-%f at %f rad/s\n', ...
|
||||
stabmarg.LowerBound, stabmarg.UpperBound, stabmarg.CriticalFrequency);
|
||||
else
|
||||
fprintf('Closed loop system is not robustly stable: mu=%f-%f at %f rad/s\n', ...
|
||||
stabmarg.LowerBound, stabmarg.UpperBound, stabmarg.CriticalFrequency);
|
||||
end
|
||||
|
||||
Twc = usubs(Gcl, wcg);
|
||||
y_wc = lsim(Twc, [u1; u2], t);
|
||||
|
||||
%% Transient plot
|
||||
figure('Name', 'Transient simulation');
|
||||
subplot(2, 3, 1);
|
||||
plot(t, u1, '--b', t, y(:, 1), 'r');
|
||||
title('Nominal system response');
|
||||
subplot(2, 3, 4);
|
||||
plot(t, u2, '--b', t, y(:, 2), 'r');
|
||||
|
||||
subplot(2, 3, 2);
|
||||
plot(t, u1, '--b'); hold on;
|
||||
for i=1:length(realizations)
|
||||
plot(t, y_unc(ninputs*i, :), 'r');
|
||||
end
|
||||
hold off;
|
||||
title('Uncertain system response');
|
||||
|
||||
subplot(2, 3, 5);
|
||||
plot(t, u2, '--b'); hold on;
|
||||
for i=1:length(realizations)
|
||||
plot(t, y_unc(ninputs*i+1, :), 'r');
|
||||
end
|
||||
hold off;
|
||||
|
||||
subplot(2, 3, 3);
|
||||
plot(t, u1, '--b', t, y_wc(:, 1), 'r');
|
||||
title('Worst case system response');
|
||||
|
||||
subplot(2, 3, 6);
|
||||
plot(t, u2, '--b', t, y_wc(:, 2), 'r');
|
||||
Loading…
Reference in New Issue