Implement untyped lambda calculus with explicit fix operator

This commit is contained in:
Francesco Magliocca 2022-04-01 14:07:56 +02:00
parent d1d2db6869
commit e22e6dd963
1 changed files with 144 additions and 0 deletions

144
main.sml Normal file
View File

@ -0,0 +1,144 @@
(* Lambda term (encoded using de bruijn indices), booleans and delimited continuations *)
datatype builtin_op = Sum | Sub | LessThan | Equal
datatype term =
Bool of bool
| Int of Int64.int
| Branch of term * term * term
| Var of int
| Lambda of term
| App of term * term
| BuiltinApp of builtin_op * term * term
| Fix of term
(* Value, the result of a computation *)
datatype value =
Closure of env * term
| BoolV of bool
| IntV of Int64.int
| Loop
(* Why a ref? Because of Fix! We want to update this value post-hoc *)
and env = Env of value ref list
fun pretty_print_value (Closure _) = "<closure>"
| pretty_print_value (BoolV b) = Bool.toString b
| pretty_print_value (IntV n) = Int64.toString n
| pretty_print_value Loop = "<loop>"
exception UnboundVar
val empty_env = Env []
fun env_push_ref (r, Env e) = Env (r :: e)
fun env_push_value (v, e) = env_push_ref (ref v, e)
fun env_lookup (idx, Env e) = !(List.nth (e, idx))
handle Subscript => raise UnboundVar
exception Stuck of string
(* Handle a possibly recursion record *)
fun unpack_recursion Loop = raise Stuck "<infinite loop>"
| unpack_recursion x = x
fun eval (_, Bool b) = BoolV b
| eval (_, Int i) = IntV i
| eval (env, Branch (cond, trueb, falseb)) = eval_branch (env, eval (env, cond), trueb, falseb)
| eval (env, Var idx) = unpack_recursion (env_lookup (idx, env))
| eval (env, Lambda t) = Closure (env, t)
| eval (env, App (lhs, rhs)) = eval_app (env, eval (env, lhs), eval (env, rhs))
| eval (env, BuiltinApp (oper, lhs, rhs)) = eval_builtin (oper, eval (env, lhs), eval (env, rhs))
| eval (env, Fix body) = eval_fix (env, body)
and eval_branch (env, BoolV true, trueb, _) = eval (env, trueb)
| eval_branch (env, BoolV false, _, falseb) = eval (env, falseb)
| eval_branch _ = raise Stuck "Condition is not a boolean"
and eval_app (env, Closure (cEnv, body), arg) = eval (env_push_value (arg, cEnv), body)
| eval_app _= raise Stuck "Left term in application is not a lambda"
and eval_builtin (Sum, IntV n1, IntV n2) = IntV (n1 + n2)
| eval_builtin (Sub, IntV n1, IntV n2) = IntV (n1 - n2)
| eval_builtin (LessThan, IntV n1, IntV n2) = BoolV (n1 < n2)
| eval_builtin (Equal, IntV n1, IntV n2) = BoolV (n1 = n2)
| eval_builtin _ = raise Stuck "Argument of builtin op is not integer"
and eval_fix (env, body) =
let
(* Step 1. Augment the body with an infinite loop variable *)
val self = ref Loop
val new_env = env_push_ref (self, env)
val result = eval (new_env, body)
(* Here we tie the knot and assign self to the result of the evaluation *)
val _ = self := result
in
result
end
fun evaluate term = eval (empty_env, term)
(* 1. Can we implement recursion in terms of shift and reduce? Re recursion is an effect *)
(* The term i want to define is:
fix (\sum. (\x. if x = 0 then 0 else sum (x - 1)))
Let us create the nameless representation
fix (\. (\. if $0 = 0 then 0 else $0 + $1 ($0 - 1)))
*)
val args = CommandLine.arguments()
val input_string = hd args
val input_number = valOf (Int64.fromString input_string)
local
val cond = BuiltinApp (Equal, Var 0, Int 0)
fun decrement x = BuiltinApp (Sub, x, Int 1)
fun add x y = BuiltinApp (Sum, x, y)
val branch = Branch (cond, Int 0, add (Var 0) (App (Var 1, decrement (Var 0))))
in
fun sum input_number = App (Fix (Lambda branch), Int input_number)
end
(* The term i want to define is:
fix (\sum. (\acc. \n. if n = 0 then acc else sum (acc + 1) (n - 1)))
Let us create the nameless representation
fix (\. (\. \. if $0 = 0 then $1 else $2 ($1 + $0) ($0 - 1)))
*)
local
val cond = BuiltinApp (Equal, Var 0, Int 0)
fun decrement x = BuiltinApp (Sub, x, Int 1)
fun sum x y = BuiltinApp (Sum, x, y)
val branch = Branch (cond, Var 1, App (App (Var 2, sum (Var 1) (Var 0)), decrement (Var 0)))
in
fun iter_sum input_number = App (App (Fix (Lambda (Lambda branch)), Int 0), Int input_number)
end
(* The term i want to define is:
fix (\fib. (\x. if x < 2 then x else fib (x - 1) + fib (x - 2)))
Let us create the nameless representation
fix (\. (\. if $0 < 2 then $0 else $1 ($0 - 1) + $1 ($0 - 2))) *)
local
val cond = BuiltinApp (LessThan, Var 0, Int 2)
fun sub x y = BuiltinApp (Sub, x, y)
val fib_minus_1 = App (Var 1, sub (Var 0) (Int 1))
val fib_minus_2 = App (Var 1, sub (Var 0) (Int 2))
val recursive_case = BuiltinApp (Sum, fib_minus_1, fib_minus_2)
val branch = Branch (cond, Var 0, recursive_case)
in
fun fib input_number = App (Fix (Lambda branch), Int input_number)
end
val term = sum input_number
val _ = print (pretty_print_value (evaluate term))
val _ = print "\n"